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A B S T R A C T

This paper is aimed at applying deep artificial neural networks for solving system of ordinary differential
equations. We developed a vectorized algorithm and implemented using python code. We conducted different
experiments for selecting better neural architecture. For the learning of the neural network, we utilized the
adaptive moment minimization method. Finally, we compare the method with one of the traditional numerical
methods-Runge–Kutta order four. We have shown that, the artificial neural network could provide better
accuracy for smaller numbers of grid points.
. Introduction

Deep neural network (DNN) has obtained great attention for solv-
ng engineering problems. System of ordinary differential equations
ODEs) that can model various physical phenomena could utilize the
dvantages of using the method. Though there are well established
raditional numerical methods for solving systems of ODEs, they have
heir own advantages and disadvantages in-terms of accuracy, stability,
onvergence, computation time etc. One of the well known method
s the fourth order Runge–Kutta method (RK4). It is among the finite
ifference methods well suited for non-stiff problems.

Artificial neural network (ANN) is an alternative method known to
he scientific community since 1940s. The beginning of ANN is often
ttributed to the research article by McCulloch and Pitts (1943). It
as less popular due to the capacity of computational machines. The

ecent development and progresses in the area is attributed to the
xponential improvement in the computing capacity of machines both
n storing data and processing speed (Basheer & Hajmeer, 2000). ‘‘An
rtificial neural network is an information-processing system that has
ertain performance characteristics in common with biological neural
etworks’’ (Yadav, Yadav, Kumar, et al., 2015). The network imi-
ates the work of biological human brain (Basheer & Hajmeer, 2000).
he structure of the architecture constitutes layers: input, hidden and
utput. Each layer have neurons or units. The name deep neural
etwork (DNN) is used when the structure has more than one hidden
ayers (Goodfellow, Bengio, Courville, & Bengio, 2016; Schmidhuber,
015).

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

E-mail address: tamirat.temesgen@astu.edu.et.

2. Related works

2.1. Deep neural networks

The DNN method has contributed a lot to the progress in artificial
intelligence specifically in computer vision, image processing, pattern
recognition and Cybersecurity (Dixit & Silakari, 2021; Dong, Wang, &
Abbas, 2021; Minaee et al., 2021). The performance is due to features
are learned rather than hand-crafted, the deep layers are able to capture
more variances (Bruna & Dec, 2018).

Some of the challenging issues related to DNN are, stability, ro-
bustness, provability and adversarial perturbation which are discussed
in Haber and Ruthotto (2017), Malladi and Sharapov (2018), Szegedy
et al. (2013), Zheng and Hong (2018) and Zheng, Song, Leung, and
Goodfellow (2016). The optimization problems arising form learn-
ing the DNN also need special consideration which are presented
in Nouiehed and Razaviyayn (2018) and Yun, Sra, and Jadbabaie
(2018).

Moreover, the search and selection of an optimal neural architecture
is difficult task (Elsken, Metzen, Hutter, et al., 2019). Some widely im-
plemented deep learning architectures — autoencoder, convolutional
network, deep belief network and restricted Boltzmann machine were
presented in Liu et al. (2017). A broader survey of advance in convo-
lutional neural network can be found in Gu et al. (2018). More related
works and recent advances in application of deep neural networks such
as in Cybersecurity, image segmentation, background subtraction and
self-supervised image recognition, are presented in Bouwmans, Javed,
Sultana, and Jung (2019), Dixit and Silakari (2021), Dong et al. (2021),
ttps://doi.org/10.1016/j.mlwa.2021.100058
eceived 27 April 2021; Received in revised form 1 June 2021; Accepted 2 June 2
vailable online 7 June 2021
666-8270/© 2021 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by-nc-nd/4.0/).
021

s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.mlwa.2021.100058
http://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2021.100058&domain=pdf
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:tamirat.temesgen@astu.edu.et
https://doi.org/10.1016/j.mlwa.2021.100058
http://creativecommons.org/licenses/by-nc-nd/4.0/


T.T. Dufera Machine Learning with Applications 5 (2021) 100058

T

𝐟

i
n
w
a
r

4

Minaee et al. (2021), Ohri and Kumar (2021) and Yi, Shiyu, Xiusheng,
and Zhigang (2016).

2.2. Works related to solving differential equations

Nowadays, researchers are applying ANN for solving differential
equations. Some of the advantages of using ANN over the traditional
numerical methods are: the solutions obtained by ANN are differ-
entiable, and closed analytic form, the method could handle com-
plex differential equations and helps to overcome the repetition of
iteration (Chakraverty & Mall, 2017).

Lee and Kang (1990) implemented neural algorithm for solving
differential equations. They have used the method for minimization
purpose where development of highly parallel algorithms for solving
the difference equations required.

Meade and Fernandez (1994) implemented a feedforward neural
networks to approximate the solution of linear ODE. They have used
the hard limit activation function to construct direct and non-iterative
feedforward neural network. The author implemented the method on
three layers, input layer, a hidden layer and output layer. Simple first
and second order ordinary differential equation were considered for
testing the method.

Lagaris, Likas, and Fotiadis (1998) used ANN for solving ordinary
and partial differential equations. For solving initial and boundary
value problems, they used trail solution satisfying the given conditions.
Then, network were trained to satisfy the differential equations. The
results were compared with well established numerical method — finite
element. The authors obtained accurate and differentiable solution in
a closed analytic form.

Partial differential equation with initial and boundary condition
were solved using neural network (Aarts & Van Der Veer, 2001). The
architecture of the network were, multiple input units, single output
unit and single hidden layer feedforward with a linear output layer
with no bias. Evolutionary algorithms were implemented for the cost
minimization. The authors tested the method on problems from physics
and geological process.

For solving ODE using ANN, unsupervised kernel mean square
algorithm were used in Sadoghi Yazdi, Pakdaman, and Modaghegh
(2011). Trial solution similar to the authors in Lagaris et al. (1998),
were implemented to obtain accurate results. Nascimento, Fricke, and
Viana (2020) presented the direct implementation of integration of
ODE through recurrent neural networks.

Berg and Nyström (2018) implemented deep feedforward ANN to
approximate solution of partial differential equations in complex ge-
ometries. They solved problems that could not be addressed or difficult
by the traditional method. They did comparison between shallow ver-
sus deep networks. More recent development and applications of ANN
in partial differential equations can be found in Berg and Nyström
(2019), Rackauckas et al. (2020), Raissi, Perdikaris, and Karniadakis
(2019) and Wang, Huan, and Garikipati (2019).

The application of ANN were also extended to the computation
of integral equations. Asady, Hakimzadegan, and Nazarlue (2014),
introduced an efficient application of ANN for approximating solution
of linear two-dimensional Fredholm integral equation of the second
kind. They have found remarkable accuracy and proposed extension
to the case of more general integral equations.

For the implementation of ANN, clear and reproducible algorithm
with implementation needs great attention. An efficient neural network
architecture has to be investigated corresponding to systems of ODE.
We need to look at the effects of numbers of hidden layers in the
architect as well as the numbers of neurons in the layers on accuracy,
speed and performance of the model in general. We need to investigate
and propose the best selection of activation function. Addressing the
issue of minimization method for the cost function is also crucial.

In this paper, we present a vectorized algorithm for solving sys-
tems of ordinary differential equation using DNN. We implement the
 n

2

Fig. 1. The schematic diagram of deep ANN.

algorithm in python and perform experimental simulations to look
at the effects of different neural architecture on the performance of
the model. Moreover, we observe the advantage of using the ANN
over the traditional methods. Specifically, we consider the fourth order
Runge–Kutta finite difference method.

The paper is structured as follows: first we remind our reader the
general formulation of systems of ordinary differential equation. Next
we setup the general form of DNN and its application in the area of dif-
ferential equations. Moreover, we perform different experiment using
python code. At the end we implement the algorithm and compare the
result with the analytical solution and with numerical solution obtained
using Runge–Kutta method.

3. Systems of ordinary differential equation

The general form of a system of 𝑛 ODEs is given by,
𝑑𝑦1
𝑑𝑡

= 𝑓1(𝑡, 𝑦1, 𝑦2,… , 𝑦𝑛)

𝑑𝑦2
𝑑𝑡

= 𝑓2(𝑡, 𝑦1, 𝑦2,… , 𝑦𝑛)

⋮ ⋮ (1)
𝑑𝑦𝑛
𝑑𝑡

= 𝑓𝑛(𝑡, 𝑦1, 𝑦2,… , 𝑦𝑛),

defined on 𝑎 < 𝑡 < 𝑏 with given initial values, 𝑦1(𝑎) = 𝑎1,… , 𝑦𝑛(𝑎) = 𝑎𝑛.
he initial value problem (1) can be written in compact way as follows;
𝑑𝐲
𝑑𝑡

= 𝐟 (𝑡, 𝐲), 𝐲(0) = 𝐲0, (2)

where 𝐲 =
[

𝑦1, 𝑦2,… , 𝑦𝑛
]𝑇 is the unknown having dimension of 𝑛×1, and

(𝑡, 𝐲) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1(𝑡, 𝑦1, 𝑦2,… , 𝑦𝑛)
𝑓2(𝑡, 𝑦1, 𝑦2,… , 𝑦𝑛)

⋮
𝑓𝑛(𝑡, 𝑦1, 𝑦2,… , 𝑦𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

s given vector valued function having dimension of 𝑛× 1. The unique-
ess and existence of the solutions to the initial value problem is
ell established theory. To obtain more understanding on existence
nd uniqueness of solution to the initial value problem (2), one may
efer Coddington and Levinson (1955).

. Deep neural network for system of ODEs

We consider a dense network of 𝐿 layers indicated in Fig. 1. The

etwork contains one neuron in the input layer corresponding to the
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independent variable for the system of ODEs. The output layer contains
𝑛 neurons corresponding to the unknown variables. For training the
DNN, we take 𝑚 sample points from the domain [𝑎, 𝑏], and form a
matrix 𝑋 = [𝑡(1),… , 𝑡(𝑚)] ∈ R1×𝑚. Here 𝑡(𝑖) ∈ [𝑎, 𝑏] ⊂ R is the 𝑖𝑡ℎ

sample point or training example. Moreover, we denote by 𝐍 ∈ R𝑛×𝑚

the output matrix. For the example, 𝑁𝑘(𝑡(𝑖), 𝑃𝑘) is the output of the
𝑘𝑡ℎ unknown corresponding to the 𝑖𝑡ℎ sample point, where 𝑃𝑘 stands
for the corresponding parameters, the weights and the bias. Following
the references, see e.g., Lagaris et al. (1998) and Malek and Shekari
Beidokhti (2006), for each 𝑡 ∈ [𝑎, 𝑏] we set a trial solution given by,

�̂�𝑗 (𝑡, 𝑃𝑗 ) = 𝑎𝑗 + (𝑡 − 𝑎)𝑁𝑗 (𝑡, 𝑃𝑗 ), 𝑗 = 1,… , 𝑛. (3)

The trial solution in Eq. (3), satisfies the initial conditions. We train the
network in such a way that the total cost function given by,

𝐽 =
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

(𝑑�̂�𝑗
𝑑𝑡

− 𝑓𝑗

)2

, (4)

converges to zero. Here, 𝑓𝑗 = 𝑓𝑗 (𝑡(𝑖), �̂�𝑗 (𝑡(𝑖), 𝑃𝑗 )). Note that, the learn-
ing process or the training is unsupervised as there are no targeted
solutions.

4.1. Forward propagation

We label nodes on layer 𝑙 − 1 by 𝑘 and nodes on layer 𝑙 by 𝑗. Then,
the following value goes into the 𝑗 th node of layer 𝑙,

𝑧𝑙𝑗 =
ℎ
∑

𝑘=1
𝑤𝑙

𝑗𝑘𝑎
𝑙−1
𝑘 + 𝑏𝑙𝑗 , (5)

where ℎ denotes the number of nodes in layer 𝑙. The matrix form
of Eq. (5) is;

𝐳𝑙 = 𝑊 𝑙𝐚𝑙−1 + 𝐛𝑙 , (6)

were the matrix 𝑊 𝑙 containing all the multiplicative parameters,
i.e., the weights 𝑤𝑙

𝑗𝑘, and 𝐛𝑙 is the bias. The values in (5) will pass to the
next hidden layer by an appropriate choice of an activation functions,
denoted by 𝜎𝑙. In this study, we choose the same activation function
for all nodes in a layer. Thus, the values for the next layer is expressed
by,

𝐚𝑙 = 𝜎𝑙(𝐳𝑙) = 𝜎𝑙(𝑊 𝑙𝐚𝑙−1 + 𝐛𝑙). (7)

For the 𝑚 grid points, 𝑖 = 1, 2,… , 𝑚, we follow the following steps. At
the first layer,

𝐳1(𝑖) = 𝑊 1𝐱(𝑖) + 𝐛1,
𝐚1(𝑖) = 𝜎1(𝐳1(𝑖)),

at the second layer,

𝐳2(𝑖) = 𝑊 2𝐚1(𝑖) + 𝐛2,
𝐚2(𝑖) = 𝜎2(𝐳2(𝑖)),

continue this till the output layer,

𝐳𝐿(𝑖) = 𝑊 𝐿𝐚𝐿−1(𝑖) + 𝐛𝐿,
𝐚𝐿(𝑖) = 𝜎𝐿(𝐳𝐿(𝑖)).

Now stacking each examples into a matrix 𝑋 as column vector, and sim-
ilarly the 𝐳1(𝑖)’s and the 𝐚1(𝑖)’s in to the matrix 𝑍1 and 𝐴1 respectively,
we have the following matrix form,

𝑍1 = 𝑊 1𝑋 + 𝐛1,
𝐴1 = 𝜎𝐿(𝑍1),

the second layer

𝑍2 = 𝑊 2𝐴1 + 𝐛2,
𝐴2 = 𝜎2(𝑍2),
 a

3

continue till the output layer 𝐿,

𝑍𝐿 = 𝑊 𝐿𝐴𝐿−1 + 𝐛𝐿,
𝐴𝐿 = 𝜎𝐿(𝑍𝐿).

4.2. The vectorized algorithm

Here we describe algorithm of DNN method for solving system of
ODE:

1. Input data: Take 𝑚 discrete points from the domain [𝑎, 𝑏] and
form a vector 𝑋 = [𝑡(1), 𝑡(2),… , 𝑡(𝑚)] of size 1 × 𝑚.

2. Define the neural network structure: Here we determine the num-
ber of layers 𝐿, input layer having one units, 𝐿− 2 hidden layer
having ℎ𝑙 units, for each 1 ≤ 𝑙 ≤ 𝐿 − 1 and the output layer
having 𝑛 units which is equal to the number of unknown in the
system.

3. Initialize the parameters, 𝑃𝑗 , 𝑗 = 1,… , 𝑛 and 2 ≤ 𝑙 ≤ 𝐿 − 1:

• 𝑊 1 has ℎ1 × 1 dimension,
• 𝑊 𝑙 has ℎ𝑙 × ℎ𝑙−1 dimension,
• 𝑊 𝐿 has 𝑛 × ℎ𝐿−1 dimension,
• 𝐛1 has ℎ1 × 1 dimension,
• 𝐛𝑙 has ℎ𝑙 × 1 dimension, and
• 𝐛𝐿 has 𝑛 × 1 dimension.

4. Forward propagation:

• For the input layer start by assigning, 𝐴0 = 𝑋.
• For the hidden layers, 1 ≤ 𝑙 ≤ 𝐿 − 1,

𝑍𝑙 = 𝑊 𝑙𝐴𝑙−1 + 𝐛𝑙 ,
𝐴𝑙 = 𝜎𝑙(𝑍𝑙),

where, 𝜎𝑙 is the activation function corresponding to the
𝑙𝑡ℎ hidden layer.

• For the output layer,

𝑍𝐿 = 𝑊 𝐿𝐴𝐿−1 + 𝐛𝐿,
𝐴𝐿 = 𝜎𝐿(𝑍𝐿),

𝐍(𝑋,𝑃𝑗 ) = 𝐴𝐿.

• Assign the trial solution using Eq. (3): To arrive at the trial
solution of an unknown function, we need to initialize a
corresponding sets of parameters.

5. Compute the cost and its gradient, using Eq. (4): Calculate gra-
dients with respect of 𝑋 and with respect to the learning param-
eters. Here we implement the automatic differentiation (Baydin,
Pearlmutter, Radul, & Siskind, 2018; Bradbury et al., 2018).

6. Update the parameter using the method of gradient decent or
any other best optimization method. One of the widely used is
the gradient decent. We randomly initialize the parameters and
update according to the following rule; for 𝑗 = 1, 2,

𝑃 𝑘+1
𝑗 = 𝑃 𝑘

𝑗 − 𝜂∇𝐽 (𝑃 𝑘
𝑗 ),

where 𝜂 is the learning rate and 𝑘 corresponds to iteration.

ote that, in addition to the simple gradient decent method, currently
here are more advanced optimization tools and still is an active
esearch topics (Calin, 2020).

The moment method is the modification of gradient decent method
esigned to avoid getting stuck in a local minimum. The updating rule
s as follows;

𝑃 𝑘+1
𝑗 = 𝑃 𝑘

𝑗 + 𝑉 𝑘+1
𝑗 ,

𝑘+1
𝑗 = 𝜇𝑉 𝑘

𝑗 − 𝜂∇𝐽 (𝑃 𝑘),

here 𝜂 > 0 is the learning rate and 𝜇 is a coefficient between 0
nd 1 called the momentum. Here 𝑘 indicates iteration and 𝑉 is a
𝑗
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new parameter (velocity) initialized from zero corresponding to each
unknown.

The Nesterov accelerated Gradient (NAG) is obtained by modifying
the momentum method and the update rule is given as follow,

𝑃 𝑘+1
𝑗 = 𝑃 𝑘

𝑗 + 𝑉 𝑘+1
𝑗 ,

𝑉 𝑘+1 = 𝜇𝑉 𝑘
𝑗 − 𝜂∇𝐽 (𝑃 𝑘 + 𝜇𝑉 𝑘

𝑗 ).

The main difference from the moment method is that, the argument of
the gradient is computed at the correlated value 𝑃 𝑘 + 𝜇𝑉 𝑘

𝑗 instead of
computing it at the current position 𝑃 𝑘

𝑗 .
The AdaGrad, Adaptive Gradient: the update rule have the form;

𝑉 𝑘
𝑗 = 𝑉 𝑘−1

𝑗 + (∇𝐽 (𝑃 𝑘
𝑗 ))

2

𝑃 𝑘+1
𝑗 = 𝑃 𝑘

𝑗 −
𝜂

√

𝑉 𝑘
𝑗 + 𝜖

∇𝐽 (𝑃 𝑘
𝑗 ),

where 𝜖 is small number to avoid division by zero. The method changes
the learning rate for the parameters in proportional to the update
history. It decays the learning rate.

The Root Mean Square Propagation, or RMSProp is family of the
gradient decent method having adaptive learning rate, again follow-
ing Calin (2020), our update rule is as follows;

𝑉 𝑘
𝑗 = 𝛽𝑉 𝑘−1

𝑗 + (1 − 𝛽)(∇𝐽 (𝑃 𝑘
𝑗 ))

2

𝑃 𝑘+1
𝑗 = 𝑃 𝑘

𝑗 −
𝜂

√

𝑉 𝑘
𝑗 + 𝜖

∇𝐽 (𝑃 𝑘
𝑗 ),

where 𝛽 ∈ (0, 1) is the forgetting factor.
Adam, Adaptive Moment, is also an adaptive learning method which

combines AdaGrad and RMSProp methods. In our case the updating
rule have the form;

𝑀𝑘
𝑗 = 𝛽1𝑀

𝑘−1
𝑗 + (1 − 𝛽1)∇𝐽 (𝑃 𝑘

𝑗 ),

𝑉 𝑘
𝑗 = 𝛽2𝑉

𝑘−1
𝑗 + (1 − 𝛽2)(∇𝐽 (𝑃 𝑘

𝑗 ))
2,

�̂�𝑘
𝑗 =

𝑀𝑘

1 − 𝛽𝑘1
, 𝑉 𝑘

𝑗 =
𝑉𝑘

1 − 𝛽𝑘2
,

𝑘+1
𝑗 = 𝑃 𝑘

𝑗 −
𝜂

√

𝑉 𝑘
𝑗 + 𝜖

�̂�𝑘
𝑗 ,

here 𝛽1, 𝛽2 ∈ [0, 1), are decay rates for the moment estimates, and we
nitialize the parameters 𝑉𝑗 and 𝑀𝑗 to be zero.

5. Implementation and comparison

In this section we implement the algorithm for solving a known non-
linear systems of differential equations. First, we perform simulation for
selecting appropriate number of layers and neurons in the layer. Then,
we compare with the analytical solution and with a numerical solution
obtained using the traditional methods. For this purpose, we consider
the following problem found in Lagaris et al. (1998),
𝑑𝑦1
𝑑𝑡

= cos(𝑡) + 𝑦21 + 𝑦2 − (1 + 𝑡2 + sin2(𝑡)), (8)
𝑑𝑦2
𝑑𝑡

= 2𝑡 − (1 + 𝑡2) sin(𝑡) + 𝑦1𝑦2,

with 𝑡 ∈ [0, 1] and 𝑦1(0) = 0 and 𝑦2(0) = 1. The analytic solutions are
𝑦1 = sin(𝑡) and 𝑦2 = 1 + 𝑡2.

5.1. Experiment on the network

We conducted an experiment on number of neurons in a layer. We
looked at the effect of number of neurons on the error function. We
took different sizes of neurons in the hidden layer, ℎ = 4, 17, 60, 150, 200,
and we plotted the cost function versus the number of iterations for the
comparison of convergence. In the simulation, we displayed the cost at
the end of iterations corresponding to each neuron size and the time it
take for the calculation. All other parameters are the same.
4

Fig. 2. Convergence of loss functions for system (8).

Fig. 3. Convergence of error functions for problem (8), two hidden layers.

From the simulation shown Fig. 2, we observe that, one can obtain
the required accuracy even for a single neuron in the hidden layer.
However, it needs large number of iterations for smaller number of
neurons leading to problem of computational time. Increasing the
numbers of neuron has advantage on the performance of the model.
However, an arbitrary increase is unnecessary. In this case ℎ = 60 has
similar accuracy with ℎ = 200 with less computational time.

The next experiment is on the number of hidden layers. Raissi
et al. (2019), have shown that for Burgers’ equation, more hidden layer
results in better performance as far as error is concerned. Also, Berg
and Nyström (2018), observed the improvement of accuracy of solving
diffusion equation. In our case, fixing all parameters and activation
functions the same as the previous experiments, we performed a simu-
lation to compare one hidden layer and two hidden layers varying the
numbers of neurons.

In Fig. 3, the result shows that, for the system of differential equa-
tion (8), adding more hidden layer do not lead to better performance.

5.2. Numerical solutions

Now we use the ANN method for solving the system of differential
equations. In line with the above simulations, we selected a single
hidden layer with 60 neurons (tuning in plus minus may not have
significant effect). For this experiment, 𝑚 = 11, uniform grid points

were sampled from the given interval. The solutions using ANN and
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Fig. 4. Comparing the ANN solution of (8), with the exact solution and error plot.

he corresponding analytical solutions are indicated in Fig. 4. The
umerical quantities are indicated in Table 1.

Table 2 indicates the error due to the neural network method.

.3. Advantage of ANN over the RK4 methods

We selected different sizes of uniform grid points, 𝑚 = 11, 16, 21
and 26 from the domain [0, 4], and computed solutions of the system
of ODEs using the two methods. The simulation in Fig. 5 shows one of
the significant advantage of using neural network method over other
traditional method — finite difference. ANN gives better performance
for smaller grid pints. Also, observe that, at the end point 𝑡 = 4, the
ANN is more accurate than the Runge–Kutta method 3. This show that,
the method could be employed for application problem requiring large
data points. However, for larger grid points, RK4 is more accurate as
expected.

6. Conclusions and outlook

In this paper, we presented a vectorized algorithm for solving

systems of ODE using DNN. We conducted different experiment using

5

Table 1
ANN and analytical solutions.

𝑦1 𝑦1 𝑦2 𝑦2
t ANN Analytic ANN Analytic

0.0 0.000000 0.000000 1.000000 1.00
0.1 0.099759 0.099833 1.009897 1.01
0.2 0.198447 0.198669 1.039812 1.04
0.3 0.295184 0.295520 1.089752 1.09
0.4 0.389015 0.389418 1.159711 1.16
0.5 0.478967 0.479426 1.249679 1.25
0.6 0.564089 0.564642 1.359636 1.36
0.7 0.643493 0.644218 1.489553 1.49
0.8 0.716370 0.717356 1.639394 1.64
0.9 0.782005 0.783327 1.809116 1.81
1.0 0.839784 0.841471 1.998666 2.00

Table 2
ANN Error.

t error 𝑦1 error 𝑦2
0.0 0.000000 0.000000
0.1 0.000075 0.000103
0.2 0.000223 0.000188
0.3 0.000336 0.000248
0.4 0.000403 0.000289
0.5 0.000459 0.000321
0.6 0.000553 0.000364
0.7 0.000725 0.000447
0.8 0.000987 0.000606
0.9 0.001321 0.000884
1.0 0.001687 0.001334

Table 3
Error at the end point 𝑡 = 4, RK4 and ANN compared for different grid
points.
Grid points ANN error RK4 error

11 0.982 9.588
16 0.959 4.668
21 1.005 1.902
26 0.990 0.825

python code and simulated the result using graphs. We have obtained
some insight on the nature of the architecture for the model. We
have seen that for some specific problems we can obtain a required
accuracy even for a single neuron in the hidden layer. More neuron size
provides more accuracy, but more iteration for learning the parameters.
Fig. 5. Comparing the ANN solution of (8), with the exact and RK4 solutions for different grid points.
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Moreover, arbitrary increase of neurons is not recommended. Based on
the underlying problem one has to set for the best size of neurons.

We compared the ANN method with the well known fourth order
Runge–Kutta method. The result showed that, the ANN produced more
accurate result for small number of the grid points. Moreover, for larger
value of the domain, the ANN method provides better accuracy than
RK4 method.

For a future work, further analytical investigation is required to
strength the foundation of DNN for solving system of ODE including
delay differential equations and stochastic differential equations. These
include looking at stability, convergence and robustness of DNN re-
lated to solving system of ODEs. In the same way looking at using
other architectures such as, recurrent neural networks, constitutional
neural network, deep probabilistic neural network, general adversarial
networks.
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